L. Dorst: The Construction of 3D Conformal Motions

Leo Dorst, The Construction of 3D Conformal Motions, Mathematics in Computer Science, Received: 10 June 2015 / Revised: 11 February 2016 / Accepted: 22 March 2016, DOI: 10.1007/s11786-016-0250-8, Open Access: http://paperity.org/p/75817198/the-construction-of-3d-conformal-motions

Abstract: This paper exposes a very geometrical yet directly computational way of working with conformal motions in 3D. With the increased relevance of conformal structures in architectural geometry, and their traditional use in CAD, its results should be useful to designers and programmers. In brief, we exploit the fact that any 3D conformal motion is governed by two well-chosen point pairs: the motion is composed of (or decomposed into) two specific orthogonal circular motions in planes determined by those point pairs. The resulting orbit of a point is an equiangular spiral on a Dupin cyclide. These results are compactly expressed and programmed using conformal geometric algebra (CGA), and this paper can serve as an introduction to its usefulness. Although the point pairs come in different kinds (imaginary, real, tangent vector, direction vector, axis vector and ‘flat point’), causing the great variety of conformal motions, all are unified both algebraically and computationally as 2-blades in CGA, automatically producing properly parametrized simple rotors by exponentiation. An additional advantage of using CGA is its covariance: conformal motions for other primitives such as circles are computed using exactly the same formulas, and hence the same software operations, as motions of points. This generates an interesting class of easily generated shapes, like spatial circles moving conformally along a knot on a Dupin cyclide.

Source: Email from L. Dorst, 30 Mar. 2016, l.dorst_AT_uva.nl


Leave a comment

Filed under publications

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s