E. Hitzer: New Developments in Clifford Fourier Transforms


Authors: Eckhard Hitzer

Abstract: We show how real and complex Fourier transforms are extended to W.R. Hamilton’s algebra of quaternions and to W.K. Clifford’s geometric algebras. This was initially motivated by applications in nuclear magnetic resonance and electric engineering. Followed by an ever wider range of applications in color image and signal processing. Clifford’s geometric algebras are complete algebras, algebraically encoding a vector space and all its subspace elements. Applications include electromagnetism, and the processing of images, color images, vector field and climate data. Further developments of Clifford Fourier Transforms include operator exponential representations, and extensions to wider classes of integral transforms, like Clifford algebra versions of linear canonical transforms and wavelets.

Comments: 7 Pages. in N. E. Mastorakis, P. M. Pardalos, R. P. Agarwal, L. Kocinac (eds.), Adv. in Appl. and Pure Math., Proc. of the 2014 Int. Conf. on Pure Math., Appl. Math., Comp. Methods (PMAMCM 2014), Santorini, Greece, July 2014, Math. & Comp. in Sci. & Eng., Vol. 29.

Download: PDF

Source: http://viXra.org/abs/1407.0169

Leave a comment

Filed under publications

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s