L. Yuan et al: Pattern forced geophysical vector field segmentation based on Clifford FFT


Pattern forced geophysical vector field segmentation based on Clifford FFT
by Yuan, L., Yu, Z., Luo, W., Yi, L., Hu, Y., Computers & Geosciences, volume 60, 2013, pp. 63 – 69.
DOI: 10.1016/j.cageo.2013.05.007.

Abstract
Vector field segmentation is gaining increasing importance in geophysics research. Existing vector field segmentation methods usually can only handle the statistical characteristics of the original data. It is hard to integrate the patterns forced by certain geophysical phenomena. In this paper, a template matching method is firstly constructed on the foundation of the Clifford Fourier Transformation (CFT). The geometric meanings of both inner and outer components can provide more attractive information about the similarities between original vector field and template data. A composed similarity  field is constructed based on the coefficients fields.  After that, a modified spatial consistency preserving K-Means cluster algorithm is proposed. This algorithm is applied to the similarity fields to extract the template forced spatial distribution pattern. The complete algorithm for the overall processing is given and the experiments of ENSO forced global ocean surface wind segmentation are configured to test our method. The results suggest that the pattern forced segmentation can extract more latent information that cannot be directly measured from the original data. And the spatial distribution of ENSO influence on the surface wind field is clearly given in the segmentation result. All the above suggest that the method we proposed provides powerful and new thoughts and tools for geophysical vector field data analysis.

Source: Email from citealert_AT_mail.elsevier-alerts.com, 22 Aug. 2013.

Leave a comment

Filed under publications

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s