**Hermann Günther Grassmann** (April 15, 1809, Stettin (Szczecin) – September 26, 1877, Stettin)

was a German polymath, renowned in his day as a linguist and now admired as a mathematician. He was also a physicist, neohumanist, general scholar, and publisher. His mathematical work was not recognized in his lifetime.

Grassmann was the third of 12 children of Justus Günter Grassmann, an ordained minister who taught mathematics and physics at the Stettin Gymnasium, where Hermann was educated. Hermann often collaborated with his brother Robert.

Grassmann was an undistinguished student until he obtained a high mark on the examinations for admission to Prussian universities. Beginning in 1827, he studied theology at the University of Berlin, also taking classes in classical languages, philosophy, and literature. He does not appear to have taken courses in mathematics or physics.

Although lacking university training in mathematics, it was the field that most interested him when he returned to Stettin in 1830 after completing his studies in Berlin. After a year of preparation, he sat the examinations needed to teach mathematics in a gymnasium, but achieved a result good enough to allow him to teach only at the lower levels. In the spring of 1832, he was made an assistant at the Stettin Gymnasium. Around this time, he made his first significant mathematical discoveries, ones that led him to the important ideas he set out in his 1844 paper referred to as A1 (see below).

In 1834 Grassmann began teaching mathematics at the Gewerbeschule in Berlin. A year later, he returned to Stettin to teach mathematics, physics, German, Latin, and religious studies at a new school, the Otto Schule. This wide range of topics reveals again that he was qualified to teach only at a low level. Over the next four years, Grassmann passed examinations enabling him to teach mathematics, physics, chemistry, and mineralogy at all secondary school levels.

Grassmann felt somewhat aggrieved that he was writing innovative mathematics, but taught only in secondary schools. Yet he did rise in rank, even while never leaving Stettin. In 1847, he was made an “Oberlehrer” or head teacher. In 1852, he was appointed to his late father’s position at the Stettin Gymnasium, thereby acquiring the title of Professor. In 1847, he asked the Prussian Ministry of Education to be considered for a university position, whereupon that Ministry asked Kummer for his opinion of Grassmann. Kummer wrote back saying that Grassmann’s 1846 prize essay (see below) contained “… commendably good material expressed in a deficient form.” Kummer’s report ended any chance that Grassmann might obtain a university post. This episode proved the norm; time and again, leading figures of Grassmann’s day failed to recognize the value of his mathematics.

During the political turmoil in Germany, 1848-49, Hermann and Robert Grassmann published a Stettin newspaper calling for German unification under a constitutional monarchy. (This eventuated in 1866.) After writing a series of articles on constitutional law, Hermann parted company with the newspaper, finding himself increasingly at odds with its political direction.

Grassmann had eleven children, seven of whom reached adulthood. A son, Hermann Ernst Grassmann, became a professor of mathematics at the University of Giessen.

**Mathematician**

One of the many examinations for which Grassmann sat, required that he submit an essay on the theory of the tides. In 1840, he did so, taking the basic theory from Laplace’s Mécanique céleste and from Lagrange’s Mécanique analytique, but expositing this theory making use of the vector methods he had been mulling over since 1832. This essay, first published in the Collected Works of 1894-1911, contains the first known appearance of what are now called linear algebra and the notion of a vector space. He went on to develop those methods in his A1 and A2.

In 1844, Grassmann published his masterpiece, his Die Lineare Ausdehnungslehre, ein neuer Zweig der Mathematik [The Theory of Linear Extension, a New Branch of Mathematics], hereinafter denoted A1 and commonly referred to as the Ausdehnungslehre, which translates as “theory of extension” or “theory of extensive magnitudes.” The first English translation of the entire A1 appeared as late as 1995, by Lloyd C. Kannenberg (H. Grassmann, A New Branch of Mathematics, The Ausdehnungslehre of 1844 and Other Works, Open Court, Chicago, 1995). Since A1 proposed a new foundation for all of mathematics, the work began with quite general definitions of a philosophical nature. Grassmann then showed that once geometry is put into the algebraic form he advocated, then the number three has no privileged role as the number of spatial dimensions; the number of possible dimensions is in fact unbounded.

Following an idea of Grassmann’s father, A1 also defined the exterior product, also called “combinatorial product” (In German: äußeres Produkt or kombinatorisches Produkt), the key operation of an algebra now called exterior algebra. (One should keep in mind that in Grassmann’s day, the only axiomatic theory was Euclidean geometry, and the general notion of an abstract algebra had yet to be defined.) In 1878, William Kingdon Clifford joined this exterior algebra to William Rowan Hamilton’s quaternions by replacing Grassmann’s rule epep = 0 by the rule epep = 1. (For quaternions, we have the rule i2 = j2 = k2 = -1.)

A1 was a revolutionary text, too far ahead of its time to be appreciated. Grassmann submitted it as a Ph. D. thesis, but Möbius said he was unable to evaluate it and forwarded it to Ernst Kummer, who rejected it without giving it a careful reading. Over the next 10-odd years, Grassmann wrote a variety of work applying his theory of extension, including his 1845 Neue Theorie der Elektrodynamik and several papers on algebraic curves and surfaces, in the hope that these applications would lead others to take his theory seriously.

In 1846, Möbius invited Grassmann to enter a competition to solve a problem first proposed by Leibniz: to devise a geometric calculus devoid of coordinates and metric properties (what Leibniz termed analysis situs). Grassmann’s Geometrische Analyse geknüpft an die von Leibniz erfundene geometrische Charakteristik, was the winning entry (also the only entry). Moreover, Möbius, as one of the judges, criticized the way Grassmann introduced abstract notions without giving the reader any intuition as to why those notions were of value.

In 1853, Grassmann published a theory of how colors mix; it and its three color laws are still taught, as Grassmann’s law. Grassman’s work on this subject was inconsistent with that of Helmholtz. Grassmann also wrote on crystallography, electromagnetism, and mechanics.

Grassmann (1861) set out the first axiomatic presentation of arithmetic, making free use of the principle of induction. Peano and his followers cited this work freely starting around 1890. Curiously, Grassmann (1861) was translated into English only very recently in 2000 by Lloyd C. Kannenberg (H. Grassmann, Extension Theory, AMS History of Mathematics Sources, Vol. 19).

In 1862, Grassman published a thoroughly rewritten second edition of A1, hoping to earn belated recognition for his theory of extension, and containing the definitive exposition of his linear algebra. The result, Die Ausdehnungslehre: Vollständig und in strenger Form bearbeitet [The Theory of Extension, Thoroughly and Rigorously Treated], hereinafter denoted A2, fared no better than A1, even though A2’s manner of exposition anticipates the textbooks of the 20th century.

One of the very few mathematicians to appreciate Grassmann’s ideas during his lifetime was Hermann Hankel, whose 1867 Theorie der complexen Zahlensysteme helped make Grassmann’s ideas better known. This work “ … developed some of Hermann Grassmann’s algebras and Hamilton’s quaternions. Hankel was the first to recognise the significance of Grassmann’s long-neglected writings … ” (Hankel entry in the Dictionary of Scientific Biography. New York: 1970-1990) ”

Grassmann’s mathematical methods were slow to be adopted but they directly influenced William K. Clifford, Felix Klein and Élie Cartan. A. N. Whitehead’s first monograph, the Universal Algebra (1898), included the first systematic exposition in English of the theory of extension and the exterior algebra. The theory of extension led to the development of differential forms and to the application of such forms to analysis and geometry. Differential geometry makes use of the exterior algebra. For an introduction to the role of Grassmann’s work in contemporary mathematical physics, see Penrose (The Road to Reality, Alfred A. Knopf, 2004: chpts. 11, 12).

Adhémar Jean Claude Barré de Saint-Venant developed a vector calculus similar to that of Grassmann which he published in 1845. He then entered into a dispute with Grassmann about which of the two had thought of the ideas first. Grassmann had published his results in 1844, but Saint-Venant claimed (and there is little reason to doubt him) that he had first developed these ideas in 1832.

**Linguist**

Disappointed at his inability to be recognized as a mathematician, Grassmann turned to historical linguistics. He wrote books on German grammar, collected folk songs, and learned Sanskrit. His dictionary and his translation of the Rgveda (still in print) were recognized among philologists. He devised a sound law of Indo-European languages, named Grassmann’s Law in his honor. These philological accomplishments were honored during his lifetime; he was elected to the American Oriental Society and in 1876, he received a honorary doctorate from the University of Tübingen.

Grassmann’s (probably) last publication was: “Ueber den Abfall vom Glauben. Mahnungen an die wissenschaftlich Gebildeten der Neuzeit.” (English: Regarding the loss of faith. Admonitions for the scientifically educated of the new age.) O. Brandner, Stettin, 1878.

Grassmann’s 200th birthday will be celebrated in the form of an international conference entitled From Past to Future: Grassmann’s Work in Context, Grassmann Bicentennial Conference (1809 – 1877), September 16 – 19, 2009 in Potsdam (Germany) and Szczecin (Poland). The conference will include an* exhibition of strange handwritings and previously unseen documents of Grassmann* and a trip along the *Paths of H. G. Graßmann*.

Main source (plus some updates): http://en.wikipedia.org/wiki/Hermann_Grassmann

here we mention as say prof dr mircea orasanu and prof horia orasanu as followed

AN APPLICATION OF GRASSMANN THEORY TO LAGRANGIAN

Author Horia orasanu

ABSTRACT

The crucial place where this principle makes a nontrivial statement is in the measure of the path integral. The nonholonomic nature of the differential coordinate transformation gives rise to an additional term with respect to the naive DeWitt measure, and this cancels precisely

1 INTRODUCTION

The rule plays the same fundamental role in quantum physics as Einstein’s equivalence principle does within classical physics, where it governs the form of the equations of motion in curved spaces. It is therefore called quantum equivalence principleIt is the purpose of these lectures to demonstarte the power of the new quantum equivalence principle and to discuss wits consequences also at the classical level, where the familiar action principle breaks down and requires an important modification Cap. 2. Fondul problemei. LAGRANGIAN si DEFINIREA CONSTRANGERILOR

Aici noi consideram ca

Astfel ca problema de mai sus se reduce la o problema importanta avalorilor proprii de

Forma

/t = [p ( x) u]-q ( x ) u

cand sunt indeplinite conditiile la limita si initiale de forma

u( )=

aici conditiile initiale si la limita reprezinta legaturile cinematice ale vitezei care sunt ec

hivalente cu legaturile neolonome ale miscarilor enuntate mai sus ,deci cele care fac part

e din dinamica sistemelor de puncte materiale ,sau sisteme de particule fluide.

indeed the theory of grassmann is important as say prof dr mircea orasanu

and thus these are very used as followed

LAGRANGIAN AND CONNECTION WITH GRASSMANN THEORY

indeed the theory of grassman is important as say prof dr mircea orasanu